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Abstract
Exact solutions of a generalization of the Torrey–Bloch equation are obtained
for use in nuclear magnetic resonance microscopy. The generalization addresses
the motion of the nuclear spins towards an attractive centre with, furthermore, an
arbitrary time dependence in the attractive (harmonic) potential. The solutions
provide an analytic way to interpret observations made with gradient magnetic
fields of arbitrary (finite) pulse duration. Limiting results for infinitesimal pulses
are shown to reduce to earlier expressions and new effects are described for
finite pulses.

1. Introduction and background

Chemical kinetics, as a subject and a methodology, appears in physics in a variety of guises.
Nuclear magnetic resonance (NMR), the topic of the present paper, uses its procedures such as
Fokker–Planck formalisms in its theoretical development. In the following we describe some
of this use both from a general viewpoint and from the viewpoint of specific experiments on
the spin echo signal. A number of new results are presented.

Much interest has centred around NMR experiments that use the pulsed and constant
magnetic field gradient in order to study molecular translational motion of diffusing particles.
Examples of successful applications of this procedure are studies of porous media in
which information about the morphology of the media has been extracted [1, 2], of liquid
crystals where confinement in porous silica aerogel matrices has been studied [3], of
rocks where, for purposes of oil extraction, characterization of pore sizes has been carried
out [4], and of biological tissues where the methodology has been used in various medical
contexts [5].

The system under consideration consists, typically, of a large number of particles, each
possessing nuclear spin, that diffuse in the presence of two static parallel external magnetic
fields, taken to point along the z axis, one strong and homogeneous B0, and the other weak
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and systematically inhomogeneous. The inhomogeneity is designed with a linear gradient
G = Gx f (t)x̂, where x̂ is the unit vector in the x direction, G the strength of the gradient
and f (t) its temporal shape function. The experiments take advantage of the inhomogeneous
external magnetic field to characterize the attenuation of what is called the NMR signal
M(t) or more properly the spin echo amplitude. For instance, freely diffusing spins under
the constant field gradient manifest an attenuation of the NMR signal which is cubic in
time [6], specifically, ln[M(t)/M(0)] = −Dg2t3/3, where g is defined as the product of
the strength of the gradient field G and the gyromagnetic ratio of the particles γ , and D is
the particle diffusion constant. The attenuation of the NMR signal is due to the combined
effects of the inhomogeneous magnetic field and the (diffusive) motion of the particles.
This should be clear from the appearance of the product Dg2 in the attenuation expression
above.

While pioneering studies of diffusing spins by NMR were performed in unrestricted
geometries under time independent field gradients in the Hahn echo experiment [6–8], more
recent growth of interest in the procedure stemmed from Stejskal and Tanner’s pulsed gradient
spin echo (PGSE) method [9–11]. One reason for the interest is the possibility of a simple
interpretation of the PGSE experiment in the limit as the pulse duration δ → 0 and g → ∞
while δg remains finite, in analogy to the nuclear scattering process. That interpretation serves
as the basis of q-space magnetic resonance imaging [12]. In that narrow pulse approximation,
analytical expressions for the attenuation factor can be obtained by just knowing the conditional
probability, P(r,�|r0), of finding a spin particle at position r at time � if initially the particle
is at r0. Thus, provided δ → 0 (and g → ∞ in the manner described above), the normalized
spin echo amplitude is given by

M(�) =
∫

dr0 P(r0)

∫
drP(r,�|r0) exp{igδx̂ · (r − r0)}. (1)

However, in practice, δ is by no means infinitesimally small, its typical value in actual
experiments being of the order of milliseconds. Certainly, important diffusion effects may occur
during the gradient pulses. A number of analytic attempts have therefore been made to obtain
usable expressions for the echo signal that are valid beyond the assumption of vanishing δ.
Perhaps the most well known of them is based on the use of the method of cumulants [13, 14].
The probability distribution of the quantity ϕ(t) ≡ ∫ t

0 dt ′g f (t ′)x(t ′) is approximated as a
Gaussian. Here x(t), the position of the spin as function of time, is analysed as a random
variable. When a truncation approximation is used on the cumulant expansion, the spin echo
amplitude is found to be

M(t) = exp{− 1
2 〈ϕ2(t)〉}, (2)

where the symbol 〈 〉 denotes an average over all possible trajectories x(t).
The truncated cumulant approximation has obviously a limited range of validity. A number

of attempts to go beyond that range have been made in the literature [15, 16]. Another way of
obtaining usable formulae for the spin echo signal that are valid for non-vanishing pulse extent
is to return to the so-called Torrey–Bloch equation (TBE) [6] and to attempt to solve it under
the simultaneous action of the field gradient and diffusion. Exact analytical expressions have
been obtained [17] in this manner for arbitrary time dependence of the field gradient and for
arbitrary initial spin distribution in space. The TBE is the equation of motion that governs
the evolution of the transverse magnetization density M(r, t), which, in its one-dimensional
version, has the form

∂M(x, t)

∂ t
= −ig f (t)x M(x, t) + D

∂2 M(x, t)

∂x2
. (3)
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The first term in the right-hand side of (3) refers to the arbitrary time dependent linear gradient
field, where g = Gγ and f (t) is the temporal shape of the gradient field taken to be in the
x direction. The second term in the right-hand side of (3) arises from the diffusing spins with
diffusion constant D. The quantity of interest is the NMR signal, which, in its simplest spatially
unresolved form, is defined as

M(t) =
∫

dx M(x, t). (4)

In the present paper we provide analytic solutions of the TBE when it is augmented by
terms representing the influence on the spins of a harmonic potential in the presence of gradient
pulses of arbitrary duration. There are two motivations for carrying out this analysis. The first
is the contribution that our formulation can make to the understanding of the NMR signal in
confined spatial regions [15–19] through a representation of the walls of the confined space
by a potential. We will postpone to a future publication our considerations in that context.
The second motivation is experimental, is relevant to the observations made by Callaghan and
Pinder [20] on polymeric gels for verifying the model of de Gennes [21], and is explained in
the next section.

Our paper is outlined as follows. In section 2 we first explain the experimental motivation
for our analysis ending with the approximate formula given by Stejskal [9] for spin diffusion
in the presence of a potential and applied by the authors of [20] to gels. We then state without
derivation the exact formula we have obtained and show that, in the limit of infinitesimal pulse
duration, it reduces to the approximate expression given by Stejskal and used by Callaghan and
Pinder. We express our result as the product of the latter (approximate) result and a correction
factor, examine the correction factor for finite pulses, and describe the new predictions expected
in Callaghan and Pinder’s experiments on the basis of our exact formula. In section 3, we show
the analytical detail of the derivation of our exact formula from the generalized Torrey–Bloch
equation. The generalization consists of replacing the diffusive term in (3) by its Fokker–Planck
extension that describes the attractive potential. We have been able to provide exact solutions
not only for a fixed harmonic potential but for a time dependent potential as well. The potential
must be harmonic in shape but may have any given time dependence. In section 4, we also
show several predictions for the NMR signal on the basis of our analysis. Section 5 consists of
concluding remarks.

2. Experimental motivation: Callaghan’s verification of the de Gennes model of gels

An interesting series of NMR microscopy experiments were performed by Callaghan and
Pinder [20] to test a model developed by de Gennes [21] for diffusion in sufficiently
concentrated solutions of polystyrene random-coil macromolecules, generally called ‘gels’.
According to the model of de Gennes, gel segments exhibit ‘cooperative diffusion’ for
experimental observation times shorter than the relaxation gel time. A scaling law emerges [21]
for the cooperative diffusion constant Dc ∼ c3/4, where c is the polymer concentration. This
diffusive process is a consequence of longitudinal gel fluctuations of wavevector k caused by
thermal energy.

To determine Dc and to verify its scaling law, Callaghan and Pinder used the standard
PGSE experiment, which consists of the application of two gradient pulses each of duration
δ and strength g, following a π/2 radio-frequency (rf) pulse, the second gradient pulse being
applied a time � after the first pulse. In order to form the echo, a π rf pulse is applied between
the two gradient pulses (figure 1). The authors of [20] modelled each gel segment as a particle
undergoing diffusion in a harmonic potential under friction damping. They argued that the ratio
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Figure 1. The standard pulse gradient spin echo consists in the application of two gradient pulses
each of duration δ. The first pulse is applied a time d after the π/2 rf pulse, while the second
gradient pulse being applied a time � after the first pulse. In order to form the echo, a π rf pulse
is applied between the two gradient pulses, after a time τ from the π/2 rf pulse. The acquisition of
the signal is made at a time 2τ , but, as explained in standard texts such as [12], is dependent on �

and not on τ provided that 2τ > �.

of the harmonic spring constant and the damping factor, which we call in the present paper A,
is simply related to the longitudinal fluctuations of the gel, being proportional to Dc through
A ≡ Dck2, and that the NMR signal is formed from the contribution of all gel segments with
given A.

For the purposes of theoretical interpretation of their experimental observations, Callaghan
and Pinder used [20] an expression derived by Stejskal [10] for the spin echo amplitude of
particles diffusing in a harmonic potential,

MS(�) = exp

(
−Dg2δ2

(
1 − e−A�

A

))
, (5)

especially its extreme limits for A� 	 1, and A� 
 1, and drew the important conclusion
that the theory of de Gennes could be verified by their NMR observations1. Here, we are not
interested in the details of that interpretation. Rather, the work reported in [20] provides one
of the motivations for our present analysis. The Stejskal expression (5) used in [20] follows
from (1) and is valid only for infinitesimally small δ and large g. By contrast, we have been
able to obtain, through exact analysis for arbitrary pulse duration δ, its counterpart which goes
beyond that limitation. What could be added to Stejskal’s formula or to its use by the authors
of [20] starting from our exact theory that is the content of the present paper? While the details
of our derivation will be given below (in the next section), to answer this question briefly but
directly, we anticipate our result for the PGSE,

M(�) = exp

(
−Dg2δ2

(
1 − e−A�

A

))
C(δ,�) (6)

and see that our exact expression can be written as the infinitesimal-pulse version of Stejskal

1 Equation (6) gives the echo attenuation for a gel segment with wavevector k. Generally, the total signal will be given
by the superposition of all k dependent local signals of the whole sample. Therefore, if p(k, T ) is the distribution of
the wavevectors k at temperature T , the total signal is given by MT (�) = 4π

∫ ∞
0 dk k2 p(k, T )M(�, k).
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times a correction factor. The correction factor C(δ,�) is given by

C(δ,�) = exp

{
− Dg2

A3
[(1 − e−A�)[(1 − e−Aδ)2 − A2δ2] + 2Aδ

+ 1
2 e−2A�(1 − e−Aδ)2(e2Aδ − 1) + −3 + e−Aδ(4 − e−Aδ)

+ 2e−A�(1 − e−Aδ)[cosh Aδ − 1]]
}
. (7)

Stejksal’s result (5) is recovered from ours in the narrow pulse limit since C(0,�) = 1, as
can be checked by simple inspection. It is important to realize that, given that A = Dck2,
the crucial quantity A� appearing in the expressions above is the square of the ratio of the
experimental diffusion distance Dc� to the wavelength of the disturbance.

The correction to (5) in the same two extreme limits discussed by Callaghan and Pinder
takes the following form. In the limit A� 	 1, the correction factor is given by

CA�	1 = exp

{
− Dg2

A3
[A�[(1 − e−Aδ)2 − A2δ2] + 2Aδ

+ 1
2 (1 − e−Aδ)2(e2Aδ − 1) + −3 + e−Aδ(4 − e−Aδ)

+ 2(1 − e−Aδ)[cosh Aδ − 1]]
}
. (8)

In the limit A� 
 1, the correction is

CA�
1 = exp

{
− Dg2

A3
[(1 − e−Aδ)2 − A2δ2 − 3 + e−Aδ(4 − e−Aδ) + 2Aδ]

}
. (9)

We show in figure 2 the difference between the δ dependence of our prediction for the
signal (solid line) and that of the Stejskal expression (dashed line). For the parameter values
chosen (arbitrary, for demonstration purposes only), we notice the expected result that the two
coincide for small values of the pulse duration but differ for larger values. Typical values of the
ratio δ/� appropriate to the Callaghan–Pinder experiments [20] are just under 0.2 and over 0.8.
We notice that our expression does not add much in the first case but does make a substantial
difference in the second. Surely, our choice A� = 0.05 in figure 2 is not based on experimental
information but is only illustrative. In the inset, we show, therefore, the signal differences for
three widely varying values of A�: 0.1, 1, 10.

3. Analytical derivation of the spin echo signal from a Fokker–Planck generalization of
the Torrey–Bloch equation

We now present the manner in which the Torrey–Bloch equation can be solved exactly in the
presence of the Fokker–Planck generalization for gradient pulses of arbitrary time dependence
and duration. We generalize equation (3) by adding to the diffusion process the effects of an
attractive external potential, and assume that the spin motion is sufficiently damped to make
inertial terms unimportant:

∂M(x, t)

∂ t
= −ig f (t)x M(x, t) + ∂

∂x

[
D

∂M(x, t)

∂x
+

(
∂

∂x
U(x, t)

)
M(x, t)

]
. (10)

We will provide exact analysis for the particular time dependence of the external potential given
by U(x, t) = A(t)x2/2, in which case our point of departure becomes
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Figure 2. Difference between the dependence on the pulse duration δ, in units of �, of our
prediction for the signal (solid line) and that of the Stejskal expression (dashed line) for A� = 0.05
and Dg2�2/A = 10. These parameter values are chosen arbitrarily for demonstration purposes
only. The inset shows signal differences for three widely varying values of A� : 0.1, 1, 10.
Typical values of the ratio δ/� appropriate to the Callaghan–Pinder experiments [20] are just under
0.2 and over 0.8. The exact signal, as given by our analysis, differs substantially from Stejskal’s
approximation in the latter, but not in the former, case.

∂M(x, t)

∂ t
= −ig f (t)x M(x, t) + ∂

∂x

[
D

∂M(x, t)

∂x
+ A(t)x M(x, t)

]
. (11)

To find the general solution of equation (11), we write M(x, t) as

M(x, t) = 1

2π

∫ ∞

−∞
dk eikx M̂(k, t) (12)

and obtain, for the evolution of the Fourier transform M̂(k, t),

∂ M̂(k, t)

∂ t
= [g f (t) − A(t)k]∂ M̂(k, t)

∂k
− Dk2 M̂(k, t). (13)

In order to make further progress with equation (13), we identify it with an inhomogeneous
continuity equation in k-space, and solve it by the method of characteristics [22]. The result,
for any initial magnetization density and any time dependent field gradient, is

M̂(k, t) = M̂

(
k e− ∫ t

0 ds A(s) + g
∫ t

0
dt ′ f (t ′)e− ∫ t ′

0 ds A(s), 0

)

× exp

{
−D

∫ t

0
dt ′

[
ke− ∫ t

t ′ ds A(s) + g
∫ t

t ′
ds f (s)e− ∫ s

t ′ dρ A(ρ)

]2}
. (14)

The inversion of the transform gives us an explicit solution of the time dependence of the
spatially resolved magnetization density M(x, t). The observed NMR signal (4) is obtained by
integrating the magnetization density over all space, equivalently from (14) by taking the limit
k → 0, since

M(t) = lim
k→0

∫ ∞

−∞
dx e−ikx M(x, t) = lim

k→0
M̂(k, t). (15)

6
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Thus, the time dependent NMR signal is obtained explicitly:

M(t) = M̂

(
g

∫ t

0
dt ′ f (t ′)e− ∫ t ′

0 ds A(s), 0

)
exp

{
−D

∫ t

0
dt ′

[
g

∫ t

t ′
ds f (s)e− ∫ s

t ′ dρ A(ρ)

]2}
.

(16)

Equation (14) for the magnetization density, and equation (16) for the observed NMR signal,
are the primary analytical results of this paper.

Reduction of our results to previously known expressions in special cases is
straightforward. The expression derived in equation (8) of [17] is obtained merely by putting
A(t) = 0 in our equation (14) above to signify the absence of the attractive potential. In
addition, for g = 0, equation (14) reduces to

M̂(k, t) = M̂
(
ke− ∫ t

0 ds A(s), 0
)
exp

{
−D

∫ t

0
dt ′[ke− ∫ t

t ′ ds A(s)
]2

}
, (17)

which is the solution, in the Fourier domain, of the Fokker–Planck equation for the time
dependent Ornstein–Uhlenbeck process [23].

4. Consequences in specific cases

In this section, we investigate applications of our general formula (16) to several cases,
specifically, (i) pulsed field gradient, (ii) constant field gradient, (iii) exponential turn-on, and
(iv) sinusoidal turn-on. Case (i) is of widespread and direct observational interest while case
(ii) is not only experimentally realizable but theoretically simple and therefore indicative of the
essential effects. In any experiment the gradient field turn-on cannot be realized in infinitesimal
time. As explained by Price [24] the rapid rise and fall of gradient pulses can generate eddy
currents in the surrounding conducting surfaces around the gradient coils even when shielded
gradient coils are used. Those eddy currents can cause phase changes in the observed spectrum,
anomalous changes in the attenuation, gradient-induced broadening of the observed spectrum,
and time dependent but spatially invariant shift effects in the static magnetic field. Therefore,
the analysis of the NMR signal in the ‘slow turn-on’ gradient is important because such slow
turn-ons are necessary to avoid these technical problems. The simplest form of a finite time
turn-on is the exponential represented by case (iii). Finally, sinusoidal gradients may be
employed to extract high frequency information in contrast to the pulsed gradient which is
dominated by a zero-frequency lobe of width �−1 [12, 25].

Notice from equations (14) and (16) that, as in the expression given by Kenkre et al [17]
for diffusive motion (with A(t) = 0), the signal in our present analysis appears as the product
of a factor controlled by the initial condition, and a factor controlled by the diffusion constant.
The contribution of the attractive potential appears in both factors through A(t). The first factor
is the Fourier transform of the initial magnetization density evaluated at a value of the Fourier
variable k determined by its translation induced by the time integral of g f (t) and its relaxation
controlled by the time integral of A(t) in the exponential. If the potential is absent (A = 0), the
Fourier variable k drifts at a speed determined by the gradient field and, if f (t) is a constant,
eventually goes to infinity. If the potential is present, the drifting Fourier variable saturates to
the value g/A which in the opposite limit of infinite A actually vanishes. The second (diffusion-
controlled) factor introduces differences in the time dependences of the signal which will be
described in the case of constant f (t) below.

The effects due to initial conditions are introduced by choosing two distinctive initial
distributions: one is a localized distribution, M̂(x, 0) = M0δ(x − x0), where it is assumed
that, initially, all the spins are localized at x0. Of course, all the spins located at one point

7
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is the picture one has in mind in this mesoscopic treatment. The second initial distribution
corresponds to the stationary distribution of the transport process involved, i.e. to that of
particles diffusing in this harmonic potential called Ornstein–Uhlenbeck process and given by

the Gaussian e−Ax2/2D/

√
2π D

A .
Although further discussion of the general case A(t) is of considerable interest, we

postpone it to future publications and concentrate in this paper on constant A. Then,
equation (16) takes the simpler form

M(t) = M̂

(
g

∫ t

0
dt ′ f (t ′)e−At ′

, 0

)
exp

{
−D

∫ t

0
dt ′

[
g

∫ t

t ′
ds f (s)e−A(t ′−s)

]2}
. (18)

We now calculate from (18) the two-pulse formula (6) for the signal acquired at time � used in
our discussion of the Callaghan–Pinder experiments.

4.1. Pulsed field gradient case

The pulsed field gradient experiment (depicted in figure 1) may be mimicked by the
following2 f (t)

f (t) = [−θ(t − d) + θ(t − d − δ) + θ(t − d − �) − θ(t − d − � − δ)], (19)

where the θ ’s are Heaviside step functions of their argument. By substituting (19) in (18), the
NMR signal acquired at t = � is then given by

M(�) = M̂

[
g

A
e−Ad (1 − e−Aδ)(1 − e−A�), 0

]
mD(�), (20)

where the diffusion-controlled factor mD(�) is

mD(�) = exp

{
− Dg2

2A3
(1 − e−Aδ)2[(1 − e−2A�) + e−2A�(e2Aδ − 1)

+ (1 − e−2Ad)(1 − e−A�)2]
}

× exp

{
− Dg2

A3
[e−Aδ(4 − e−Aδ)

− 3 + 2Aδ + 2e−A�(1 − e−Aδ)[cosh Aδ − 1]]
}
, (21)

while the first factor gives the contribution due to the initial magnetization density.
In the case when the initial magnetization density is localized at position x0, (20) reduces

to

M(�) = cos

[
gx0

A
e−Ad(1 − e−Aδ)(1 − e−A�)

]
mD(�), (22)

where an explicit dependence on d , the time when the first pulse is applied, is seen. However,
when the initial magnetization density M(x, 0) is proportional to the Gaussian e−Ax2/2D , we
get

M(�) = exp

[
− Dg2

2A3
e−2Ad(1 − e−Aδ)2(1 − e−A�)2

]
mD(�). (23)

This expression is independent of d because the initial distribution is stationary.
Expressions (22), (23) show that the initial distribution plays an important role in the attenuation

2 The f (t) given by equation (19) represents the two pulses depicted in figure 1, with the exception that the amplitude
of the first one is the negative of the second. This change of sign mimics the effect of the second radio-frequency pulse
that occurs at τ [12].

8
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of the signal. Of course, one may consider a Gaussian of width L, not related to D/A, as the
initial distribution. In that case, the first factor will not depend on the diffusion constant D but
indeed will contribute to the attenuation of the signal.

The correction factor C(δ,�), discussed earlier, is obtained from (23) by simply
computing M(�) exp{Dg2δ2(1 − e−A�)/A}. In the narrow pulse limit (small δ), we get

M(�) = e−Dg2δ2(1−e−A�)/A, (24)

which agrees exactly with the result given by Stejskal’s formula (1).

4.2. Constant gradient case: f (t) = 1

The NMR signal for the steady field gradient is given by

M(t) = M̂

[
g

A
(1 − e−At ), 0

]
MD(t) (25)

where we have denoted the factor mD(t) by MD(t) for this constant gradient case:

MD(t) = exp

(
− Dg2

A2
t

)
exp

{
Dg2

A3

[
3

2
+ 1

2
e−2At − 2e−At

]}
. (26)

For an initial Gaussian magnetization density proportional to exp{−Ax2/2D}, we get from (25)

M(t) = exp

(
− Dg2

A2
[t −

(
1 − e−At

A

)
]
)

, (27)

whereas, for an initially localized magnetization density, i.e., when it is proportional to
δ(x − x0), the signal becomes

M(t) = cos

[
gx0

A
(1 − e−At )

]
MD(t). (28)

We notice a variety of possible time dependences of the signal according to the values of
the dimensionless ratio α = A/(Dg2)1/3, as well as of At . The physical significance of α can
be understood from the well-known cubic dependence of the logarithm of the NMR signal on
time if spins diffuse freely. The characteristic time in that free diffusion case is (Dg2)−1/3. The
quantity α is simply the ratio of that free diffusion signal time to 1/A, the characteristic time
for the spin to be pulled into its attractive centre. The diffusion-controlled factor, defined in
equation (26), has the characteristic free diffusion form, with an exponent cubic in time, for
small At : for At → 0, one obtains MD(t) → e− 1

3 Dg2 t3
. In the opposite limit of large At , one

has a simple exponential decay: MD(t) → e− Dg2

A2 t . This simple exponential decay also occurs
in the limit α → ∞. By contrast, for At 	 1 in the initial Gaussian case, one obtains a quite
different time dependence:

M(t) = exp

(
− Dg2

2A
t2

)
. (29)

It is interesting as well as instructive to calculate the NMR signal of spins moving
ballistically towards an attractive centre in the absence of diffusion. To that end, we set D = 0
in the above results and treat, in turn, a localized and a Gaussian initial spin distribution.

In the case of a localized initial distribution, the NMR signal at time t is simply given
by equation (28) with MD(t) = 1. Generally, in the long time limit (At 
 1), the signal
goes to the constant cos(gx0/A). However, it reaches the constant value in two different
ways depending on the value of the dimensionless ratio gx0/A. The signal shows a transition
between oscillatory and non-oscillatory behaviour. If gx0/A is less than 3π/2 the NMR signal
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attenuates, reaching the value cos(gx0/A) exponentially. On the other hand, if gx0/A � 3π/2,
the signal oscillates before reaching the constant cos(gx0/A). See figure 3(a). This result
is straightforwardly generalized to the case when the initial density of spins is distributed in
various well-localized positions, i.e. M(x, 0) = ∑

i Mi δ(x − xi), leading to

M(t) =
∑

i

Mi cos

[
gxi

A
(1 − e−At )

]
. (30)

If the xi ’s are Gaussian distributed with width w, in the continuum limit we get

M(t) = 1√
w2π

∫ ∞

−∞
dx M0(x)e−x2/w2

cos

[
gx

A
(1 − e−At )

]
. (31)

If we assume M0(x) = M0, equation (31) reduces to the following attenuated signal:

M(t) = exp

{
−1

2

(
gw

A

)2

[1 − e−At ]2

}
. (32)

If initially the spins are distributed via a Gaussian of width w centred around x0,
specifically if M(x, 0) = exp[−(x − x0)

2/w2]/√w2π , we get the following expression for
the NMR signal:

M(t) = cos

[
gx0

A
(1 − e−At )

]
exp

{
−1

2

(
gw

A

)2

[1 − e−At ]2

}
. (33)

As is evident from the last result, the effect on the NMR signal, of a finite width w of the initial
distribution, is an attenuation. How important this attenuation is will depend on the ratio w/x0.
See figures 3(b) and (c).

4.3. Exponential turn-on case

For this case we consider f (t) = 1− exp(−t/τ), τ being the turn-on time of the gradient field.
We get

M(t) = exp

(
− Dg2

A3
[At + h(t)]

)
, (34)

where

h(t) =
[

1 − Aτ

Aτ + 1
e−t/τ

][
2(Aτ )2

(Aτ )2 − 1
(e−t/τ − e−At ) − 2(1 − e−At )

− 1

2
(1 − e−2At )

]
− Aτ

(1 + Aτ )2
e−t/τ

[
Aτ (1 + Aτ )(et/τ − 1)

× 1
2 (1 − e−2At ) + −2(Aτ )2 sinh(t/τ)

]
. (35)

The dependence of M(t) upon A is shown in figure 4 for various values of the ratio α =
A/(Dg2)1/3.

4.4. Sinusoidal f (t)

If the turn-on is not monotonic, indeed, if the gradient is sinusoidal in time, we get f (t) =
sin ωt and obtain

M(t) = exp

( −Dg2 cos φ

2(A2 + ω2)3/2

)
exp

{
− Dg2

2(A2 + ω2)

[
t − sin 2(ωt + φ)

2ω

+ sin2(ωt + φ)(1 − e−2At )

A
− 4 sin(ωt + φ)(sin ωt)

(A2 + ω2)1/2

]}
(36)
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Figure 3. The normalized NMR signal M(t) as function of the dimensionless time At , when there is
no diffusion and the initial distribution of spin particles is localized at x = x0. As the spin particles
move ballistically from x0 towards the attractive centre at x = 0, the frequency of the signal varies
proportional to (1 − e−At ). If gx0/A � π/2, the signal decays exponentially to the positive value
cos(gx0/A). If π/2 � gx0/A � π , it decays to a negative value. If 3π/2 � gx0/A, it displays
oscillations. In (a), the cases in which the NMR signal decays exponentially (gx0/A = 1, π/2
and π ) are shown by dashed lines. The oscillatory behaviour is shown by solid lines for the values
gx0/A = 3π/2 and 10. The dependence of the signal on the width of the distribution is shown in
(b) for gx0/A = π/2 and in (c) for gx0/A = 3π/2, for various values of the ratio w/x0.

where φ ≡ arctan(ω/A). The time dependence is shown in figure 4. Strong oscillations are
seen for free diffusion (α = 0). The oscillation amplitude reduces significantly as α increases.
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Figure 4. The normalized NMR signal M(t) as function of the dimensionless time t (Dg2)1/3

for three time dependences of the gradient field: (a) slow turn-on, f (t) = 1 − (exp −t/τ ) with
τ (Dg2)1/3 = 2, (b) sinusoidal from initial zero value, f (t) = sin ωt with ω/(Dg2)1/3 = 2.5, and
(c) sinusoidal from initial non-zero value, f (t) = cos ωt with ω/(Dg2)1/3 = 0.5. Different curves
correspond to different values of α = A/(Dg2)1/3: 0, 2, 5 and 10 respectively. The curves labelled
with α = 0 correspond to the case of free diffusion. A conspicuous reduction of the attenuation
signal is shown as α increases.

A sinusoidal turn-on from zero initial value of the gradient field has been considered above.
For the case when the field is initially non-zero, we may consider f (t) = cos(ωt) which
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gives

M(t) = exp

(
Dg2 cos φ

2(A2 + ω2)3/2

)
exp

{
− Dg2

2(A2 + ω2)

[
t + sin 2(ωt + φ)

2ω

+ cos2(ωt + φ)(1 − e−2At )

A
− 4 cos(ωt + φ)(e−At − cos ωt)

(A2 + ω2)1/2

]}
. (37)

It is clear on the basis of figure 4 that in the three cases considered before, the effect of the
harmonic potential is to reduce the attenuation of the NMR signal M(t) with respect to the free
diffusion case [17].

5. Conclusions

Starting from the Torrey–Bloch equation (3) generalized to include a harmonic potential
of arbitrary time dependence driving the spin particles towards an attractive centre,
specifically (11), we have given analytic usable expressions for the space-resolved
magnetization density, as well as for the integrated NMR signal. Our results are equations (14)
and (16) respectively. We have shown that a number of results known earlier, including those
derived in [9, 17], emerge as particular cases of our expressions. In addition, our analysis
provides new practically usable results. These are in equations (20), (25), (34), (36) and (37).
We have depicted our results graphically in figures 3, 4.

Our analysis makes it possible to treat a variety of experimental situations, including
ballistic motion of the spins toward a fixed target and different shapes of the field gradient. In
the PGSE experiment, we give an exact treatment of pulses of arbitrary duration with the added
advantage that the initial spin distribution may also be arbitrary. We find that the initial spin
distribution plays an important role in the attenuation of the NMR signal. In particular, we have
described oscillations in the signal when the initial distribution is localized at specific positions.
The oscillations disappear for wide distributions but add up to further attenuation of the signal.
One of the obvious applications of our theory is to the Callaghan–Pinder experiment [20]
carried out for the verification of the gel model of de Gennes. We will report elsewhere on
our further studies of that experiment. Also to be presented elsewhere are the exploration of
time dependent A(t), particularly the effects of the interplay of that time dependence with the
time dependence of f (t), i.e., of the gradient field. A conceptually independent application of
the theory presented in this paper is to the representation of confining walls by potentials U(x).
It is under way and will also be discussed elsewhere.
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